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Abstract
Background Cardiovascular disease (CVD) remains a major global health challenge, particularly affected by glucose 
metabolism status. However, the relationship between estimated glucose disposal rate (eGDR) and future CVD risk 
across different glucose metabolism status remains unclear.

Methods We analyzed data from the China Health and Retirement Longitudinal Study (2011–2020) of participants 
aged ≥ 45 years. The eGDR was calculated using waist circumference, hypertension status, and HbA1c levels. CVD 
events (stroke or cardiac events) were the outcome. Participants were categorized by glucose metabolism status 
(normoglycemia, prediabetes, diabetes). Cox proportional hazards models and restricted cubic splines were used to 
assess associations and potential non-linear relationships.

Results Among 7,828 participants (52.84% male, mean age 59.01 ± 9.21 years) followed for an average of 8.29 years, 
1,944 participants (24.83%) developed CVD. Higher eGDR was inversely associated with CVD risk across all glucose 
metabolism states. Below the inflection points (11.77, 11.15, and 11.56 mg/kg/min for normoglycemia, prediabetes, 
and diabetes, respectively), each 1-unit increase in eGDR reduced CVD risk by 14% (HR = 0.86, 95%CI: 0.83–0.89), 10% 
(HR = 0.90, 95%CI: 0.86–0.93), and 14% (HR = 0.86, 95%CI: 0.81–0.91), respectively.

Conclusion The eGDR demonstrates a potentially non-linear inverse association with future CVD risk across different 
glucose metabolism states.
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Introduction
Cardiovascular disease (CVD) remains a significant 
global health challenge, with its prevalence continuing 
to rise across various demographics and regions [1, 2]. 
Recent studies indicate that CVD is responsible for a sub-
stantial portion of global morbidity and mortality, affect-
ing nearly half a billion individuals worldwide [3, 4]. The 
World Health Organization (WHO) recognizes CVD as 
one of the leading causes of death, accounting for more 
than 40% of global mortality [5–8]. The prevalence of 
CVD is particularly alarming in low- and middle-income 
countries, where it is exacerbated by increasing rates of 
risk factors such as hypertension, diabetes, and obesity 
[9, 10].

Diabetes, prediabetes, and normoglycemia are critical 
states in the continuum of glucose regulation that sig-
nificantly influence cardiovascular risk [11, 12]. Diabetes 
itself is a significant risk factor for cardiovascular morbid-
ity and mortality [13, 14]. Moreover, a growing body of 
research indicates that prediabetes is associated with an 
increased risk of CVD [15, 16]. Interestingly, those with 
diabetes or prediabetes are not the only ones at risk for 
CVD. Research has consistently demonstrated that even 
individuals classified as normoglycemic can experience 
heightened cardiovascular risks due to underlying meta-
bolic disturbances [17–19]. This paradox is explained by 
insulin resistance (IR), which often precedes detectable 
glycemic abnormalities and induces chronic inflamma-
tion while activating pathological molecular pathways 
conducive to CVD development [20, 21]. These mecha-
nisms establish a critical link between subtle metabolic 
dysfunction and cardiovascular risk even without overt 
dysglycemia [20, 21]. Even though they might not exhibit 
obvious signs of diabetes, these individuals’ cardiovascu-
lar health has to be closely watched and evaluated.

IR represents a critical physiological state underlying 
various metabolic disorders and CVD [22]. Metabolic 
syndrome (MetS), characterized by a cluster of cardio-
metabolic risk factors including abdominal obesity, dys-
lipidemia, hyperglycemia, and hypertension, shares IR as 
its common pathophysiological foundation and has been 
consistently associated with increased CVD risk [23]. The 
estimated glucose disposal rate (eGDR) includes waist 
circumference (WC), hypertension, and Hemoglobin A1c 
(HbA1c), integrates key components of MetS, serves as a 
practical measure of IR, and is associated with diabetes 
[24–27]. Moreover, eGDR has been validated against the 
euglycemic hyperinsulinemic clamp technique, which is 
considered the gold standard for measuring insulin sensi-
tivity [24, 28]. According to several earlier studies, eGDR 
was substantially linked to CVD in the general popula-
tion, CVD under circadian rhythm and various meta-
bolic states, CVD in people without diabetes, stroke in 
the general population, and stroke in diabetes people [26, 

29–33]. However, little is known about the precise rela-
tionships between eGDR and CVD in the general popula-
tion over different glucose metabolism status, especially 
in persons with prediabetes or normoglycemia. There is a 
need for a more thorough examination because the exist-
ing literature only provides a limited understanding of 
this relationship.

Based on data from the China Health and Retirement 
Longitudinal Study (CHARLS), we sought to assess the 
relationship between eGDR and risk of CVD (stroke or 
cardiac events) in individuals with glucose metabolism 
status, given the importance of this condition in the 
development of CVD.

Methods
Data source and study population
All participants in this prospective study were drawn 
from the CHARLS, a nationwide cohort that was estab-
lished in 2011. The cohort focuses on middle-aged and 
elderly Chinese citizens who are 45 years of age or older 
[34]. In order to determine their health condition, the 
participants are tracked down once every two to three 
years. Five follow-up survey waves have been conducted 
thus far, with data being gathered in 2011, 2013, 2015, 
2018, and 2020. The specific research procedures have 
been previously outlined [34]. The CHARLS study was 
approved by the Peking University Institutional Review 
Board (IRB00001052-11015) and all participants pro-
vided written informed consent.

CVD incidence increases markedly with age, particu-
larly in middle-aged and older adults [1, 2, 35, 36]. The 
CHARLS has been used successfully in previous pub-
lished studies examining the relationship between eGDR 
and CVD in this middle-aged and elderly specific popu-
lation [26, 30, 31]. In the flowchart (Fig.  1), the inclu-
sion and exclusion criteria are specified: (i) participants 
younger than 45 or with missing data. (ii) participants 
with CVD or missing baseline information. (iii) par-
ticipants who had less than two years of follow-up. (iv) 
participants lacking data on WC, hypertension, and 
HbA1c. (v) participants with extreme eGDR values that 
are more or less than three standard deviations from the 
mean. Consequently, the study included a total of 7,828 
individuals.

Data collection
The information collected for this study includes: (i) Data 
on demographics: gender, age, marital status, living place, 
and education level. (ii) Lifestyle-related information: 
smoking status, drinking status, self-report hypertension, 
self-report diabetes. (iii) Physical dimensions: height, 
weight, WC, systolic blood pressure (SBP), and diastolic 
blood pressure (DBP). (iv) Lab test results: triglyceride 
(TG), total cholesterol (TC), high-density lipoprotein 
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cholesterol (HDL-c), low-density lipoprotein cholesterol 
(LDL-c), uric acid (UA), serum creatinine (Scr), blood 
urea nitrogen (BUN), Hemoglobin A1c (HbA1C), fasting 
plasma glucose (FPG), C-reactive protein (CRP), White 
blood cell (WBC), platelets.

Variables
eGDR
The present study utilized the earlier established formula 
to calculate the eGDR (mg/kg/min) [24]:

 
eGDR = 21.158 − (0.09 ∗ WC)
− (3.407 ∗ hypertension) − (0.551 ∗ HbA1c)

[WC = waist circumference (cm), hypertension (yes = 1/
no = 0), and HbA1c = HbA1c (%)]

A diagnosis of hypertension was determined by either a 
self-reported physician diagnosis or SBP/DBP of at least 
140/90 mmHg [37].

Glucose metabolism status
Diabetes was determined by an FPG level of 126 mg/dl or 
higher, an HbA1c of 6.5% or more, and/or a self-reported 
diagnosis from a doctor [11]. Prediabetes was identified 
by an FPG ranging from 100 to 125 mg/dL or an HbA1c 
between 5.7% and 6.4% [11]. Those without prediabetes 
or diabetes were identified as having normoglycemia [11].

Outcomes of the study
CVD diagnosis
The investigation focused on the incidence of CVD over 
the follow-up period (2013, 2015, 2018, and 2020). To 
gather past CVD diagnoses (cardiac events or stroke), 
a standardized question, “Have you been diagnosed 

Fig. 1 The flowchart of study participants
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with heart failure, coronary heart disease, angina, heart 
attack, or other heart problems by a doctor?” or “Have 
you been diagnosed with stroke by a doctor?” was used. 
This is consistent with earlier, related research [38, 39]. 
The CHARLS study team adopted strict quality control 
techniques for data recording and verification to assure 
the trustworthiness of the data [34].

Missing data handling
In the total sample of 7,828 participants, the missing data 
were as follows: smoking status (1, 0.01%), drinking sta-
tus (6, 0.08%), BMI (60, 0.77%), FBG (117, 1.49%), CRP 
(103, 1.32%), WBC (156, 1.99%), platelets (153, 1.95%), 
BUN (104, 1.33%), Scr (120, 1.53%), TG (108, 1.38%), 
HDL-c (103, 1.32%), LDL-c (118, 1.51%), and UA (103, 
1.32%). Missing covariate data were addressed using mul-
tiple imputations [40]. Missing data analysis was con-
ducted with the assumption that the data was missing at 
random [41].

Statistical analysis
Baseline characteristics across eGDR quartiles were com-
pared using one-way analysis of variance (ANOVA) or 
Kruskal-Wallis tests for continuous variables, depending 
on their distribution patterns. Categorical variables were 
compared using chi-square tests.

The selection of confounding factors was based on two 
criteria: variables that induced changes in effect estimates 
exceeding 10% or demonstrated association with the out-
come [42]. TC was excluded due to collinearity concerns 
(Supplementary Table S1). Based on clinical relevance 
and previous literature, the final set of confounding vari-
ables included demographic characteristics (gender, age, 
living place, education level, marital status), lifestyle 
factors (drinking status, smoking status), inflammatory 
markers (CRP, WBC, platelets), and metabolic param-
eters (FBG, BUN, Scr, UA, TG, HDL-c, LDL-c, BMI).

The association between eGDR and CVD risk was 
evaluated using Cox proportional hazards regression 
models, generating hazard ratios (HRs) with corre-
sponding 95% confidence intervals (CIs). Three models 
with progressive adjustment were established: a non-
adjusted model; Adjust I model (incorporating age and 
gender); and Adjust II model (including gender, age, liv-
ing place, education level, marital status, drinking sta-
tus, smoking status, CRP, WBC, platelets, FBG, BUN, 
Scr, UA, TG, HDL-c, LDL-c, BMI). The potential non-
linear relationship between eGDR and CVD risk was 
examined through restricted cubic spline (RCS) mod-
els, while two-piecewise linear regression models were 
applied to identify inflection points using log-likelihood 
ratio tests [43]. Threshold effect analyses were conducted 
within glucose metabolism subgroups to determine spe-
cific eGDR inflection points. To explore potential effect 

modifications, stratified analyses were performed across 
various subgroups (gender, age, BMI, smoking status, 
drinking status, and glucose metabolism status), with 
formal testing of interaction terms. The robustness of the 
findings to unmeasured confounding was assessed using 
E-value calculations [44].

Statistical analyses were performed using R software 
(version 4.2.0) and EmpowerStats (version 4.2), with all 
results reported in accordance with the STROBE guide-
lines [42]. Statistical significance was defined as a two-
sided P-value less than 0.05.

Results
Characteristics
The study included 7,828 subjects (52.84% male) with 
an average age of 59.01 ± 9.21 years (Table  1). Figure  2 
demonstrates that eGDR has a normal distribution, 
with a mean value of 9.41 ± 2.21 mg/kg/min. At baseline, 
41.58% of participants had normoglycemia, 42.91% had 
prediabetes, and 15.51% had diabetes. During an aver-
age follow-up of 8.29 ± 1.67 years, the total CVD preva-
lence was 24.83%. From eGDR quartiles Q1 to Q4, BMI, 
WC, HbA1c, FBG, CRP, TC, TG, and LDL-c decreased, 
whereas HDL-c increased (all P < 0.001). The preva-
lence of CVD fell across quartiles, from 35.22 to 18.07% 
(Table 1).

Multivariate analyses
In the fully adjusted model (Adjust II), increased eGDR 
was significantly associated with lower risk of CVD 
across all glucose metabolism status (Table  2). For 
each 1  mg/kg/min increment in eGDR, the CVD risk 
decreased by 13% in normoglycemia group (HR = 0.87, 
95%CI: 0.84–0.90), 8% in prediabetes group (HR = 0.92, 
95%CI: 0.89–0.95), and 12% in diabetes group (HR = 0.88, 
95%CI: 0.83–0.92). When analyzed by quartiles, partici-
pants in the highest eGDR quartile showed significantly 
reduced risks compared with the lowest quartile (nor-
moglycemia: HR = 0.46, 95%CI: 0.37–0.57; prediabetes: 
HR = 0.65, 95%CI: 0.53–0.80; diabetes: HR = 0.43, 95%CI: 
0.28–0.68) (Table 2).

Nonlinear analyses
The association between eGDR and CVD risk was exam-
ined using RCS analyses, stratified by glucose metabo-
lism status (Fig.  3). The dose-response curves revealed 
inverse associations across all glycemic states, with dis-
tinct inflection points observed in normoglycemic, pre-
diabetic, and diabetic populations (Fig. 3).

Threshold effect analysis revealed non-linear asso-
ciations between eGDR and CVD risk across all glucose 
metabolism status (Table 3). A significant infection point 
was observed at eGDR = 11.77, 11.15, and 11.56  mg/
kg/min for normoglycemia, prediabetes, and diabetes 
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groups, respectively. Below the threshold, eGDR showed 
a strong protective effect against CVD risk. Specifi-
cally, each 1-unit increment of eGDR reduced CVD risk 
by 14% in the normoglycemia group (HR = 0.86, 95%CI: 
0.83–0.89, P < 0.0001), 10% in the prediabetes group 
(HR = 0.90, 95%CI: 0.86–0.93, P < 0.0001), and 14% in the 
diabetes group (HR = 0.86, 95%CI: 0.81–0.91, P < 0.0001) 
(Table 3).

We used E-values to determine the robustness of 
potential unmeasured confounders in the data, and our 
findings were consistent until an unmeasured confounder 
had an HR larger than 1.41.

Subgroup analyses
Stratified analyses were performed to evaluate the con-
sistency of the association between eGDR and CVD risk 

Table 1 Characteristics of study participants according to eGDR quartiles
Variable Overall eGDR quartile (mg/kg/min) P 

valueQ1(2.67–7.42) Q2(7.42–10.09) Q3(10.09–11.17) Q4(11.17–16.18)
N 7828 1956 1957 1956 1959
Age, years 59.01 ± 9.21 60.95 ± 9.36 59.91 ± 9.45 57.20 ± 8.50 57.98 ± 9.00 < 0.001
Gender < 0.001
Male 4136 (52.84%) 1110 (56.75%) 1036 (52.94%) 1002 (51.23%) 988 (50.43%)
Female 3692 (47.16%) 846 (43.25%) 921 (47.06%) 954 (48.77%) 971 (49.57%)
Living place < 0.001
Urban 2597 (33.18%) 772 (39.47%) 664 (33.93%) 632 (32.31%) 529 (27.00%)
Rural 5231 (66.82%) 1184 (60.53%) 1293 (66.07%) 1324 (67.69%) 1430 (73.00%)
Education level 0.001
Below primary school 3817 (48.76%) 981 (50.15%) 973 (49.72%) 879 (44.94%) 984 (50.23%)
Primary school 1695 (21.65%) 419 (21.42%) 443 (22.64%) 414 (21.17%) 419 (21.39%)
Middle school 1559 (19.92%) 380 (19.43%) 367 (18.75%) 450 (23.01%) 362 (18.48%)
High school or above 757 (9.67%) 176 (9.00%) 174 (8.89%) 213 (10.89%) 194 (9.90%)
Married 6912 (88.30%) 1694 (86.61%) 1690 (86.36%) 1785 (91.26%) 1743 (88.97%) < 0.001
Smoking status 3089 (39.47%) 692 (35.38%) 777 (39.72%) 780 (39.88%) 840 (42.88%) < 0.001
Drinking status 3092 (39.53%) 766 (39.18%) 794 (40.61%) 752 (38.49%) 780 (39.84%) 0.566
BMI, kg/m² 23.03

(20.78–25.58)
25.63
(23.52–27.93)

23.61
(20.93–26.50)

23.15
(21.58–24.60)

20.42
(19.03–21.90)

< 0.001

WC, cm 84.16 ± 11.67 93.33 ± 7.38 86.36 ± 10.76 84.79 ± 4.16 72.17 ± 11.14 < 0.001
HbA1c, % 5.25 ± 0.79 5.49 ± 1.06 5.35 ± 0.94 5.16 ± 0.41 4.99 ± 0.42 < 0.001
FPG, mg/dl 109.57 ± 35.50 119.57 ± 48.11 114.37 ± 42.48 103.34 ± 18.19 101.00 ± 18.89 < 0.001
CRP, mg/dl 1.00 (0.54–2.09) 1.41 (0.74–2.78) 1.06 (0.57–2.12) 0.89 (0.51–1.80) 0.74 (0.43–1.53) < 0.001
WBC (×10^9/L) 6.24 ± 1.89 6.50 ± 1.98 6.24 ± 1.81 6.20 ± 1.86 6.04 ± 1.89 < 0.001
Platelets (×10^9/L) 212.00 ± 72.55 214.64 ± 72.79 212.09 ± 75.55 210.94 ± 70.24 210.32 ± 71.45 0.264
BUN, mg/dl 15.74 ± 4.47 15.80 ± 4.51 15.84 ± 4.64 15.62 ± 4.40 15.71 ± 4.31 0.431
Scr, mg/dL 0.78 ± 0.23 0.80 ± 0.32 0.78 ± 0.20 0.77 ± 0.18 0.76 ± 0.16 < 0.001
TC, mg/dl 193.55 ± 38.42 201.33 ± 40.23 194.47 ± 37.64 192.32 ± 38.21 186.08 ± 35.97 < 0.001
TG, mg/dl 104.43 

(74.34-152.22)
130.10 
(90.27-188.51)

107.08 
(76.11–159.30)

99.12 (73.46–141.60) 85.85 (63.72-121.69) < 0.001

HDL-c, mg/dl 51.56 ± 15.32 47.12 ± 13.94 50.99 ± 15.71 51.91 ± 14.63 56.24 ± 15.55 < 0.001
LDL-c, mg/dl 116.25 ± 34.64 121.05 ± 36.98 116.18 ± 34.64 116.75 ± 34.24 111.03 ± 31.80 < 0.001
UA, mg/dl 4.44 ± 1.24 4.69 ± 1.31 4.51 ± 1.26 4.32 ± 1.17 4.22 ± 1.17 < 0.001
Baseline Hypertension 2951 (37.70%) 1943 (99.34%) 966 (49.36%) 2 (0.10%) 40 (2.04%) < 0.001
eGDR (mg/kg/min) 9.41 ± 2.21 6.35 ± 0.82 8.76 ± 0.87 10.68 ± 0.30 11.84 ± 0.78 < 0.001
Follow-up time, years 8.29 ± 1.67 7.96 ± 1.93 8.24 ± 1.73 8.44 ± 1.49 8.52 ± 1.42 < 0.001
Baseline Glucose metabolism 
status

< 0.001

Normoglycemia 3255 (41.58%) 579 (29.60%) 701 (35.82%) 897 (45.86%) 1078 (55.03%)
Prediabetes 3359 (42.91%) 868 (44.38%) 882 (45.07%) 871 (44.53%) 738 (37.67%)
Diabetes 1214 (15.51%) 509 (26.02%) 374 (19.11%) 188 (9.61%) 143 (7.30%)
CVD < 0.001
No 5884 (75.17%) 1267 (64.78%) 1458 (74.50%) 1554 (79.45%) 1605 (81.93%)
Yes 1944 (24.83%) 689 (35.22%) 499 (25.50%) 402 (20.55%) 354 (18.07%)
Data are presented as mean ± standard deviation, median (interquartile range) or number (percentage)
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across different subgroups (Table 4). The protective effect 
of eGDR against CVD was remarkably consistent across 
gender, age, drinking status, smoking status, BMI, and 
glucose metabolism status (Table 4).

Discussion
In this large-scale prospective cohort study of 7,828 par-
ticipants aged ≥ 45 years with an average follow-up of 8.29 
years, we investigated a significant inverse association 
between eGDR and CVD risk, with distinct threshold 
effects across glucose metabolism states. Below the iden-
tified thresholds (11.77, 11.15, and 11.56 mg/kg/min for 

Fig. 2 Distribution of eGDR in the study population
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normoglycemia, prediabetes, and diabetes, respectively), 
each 1 mg/kg/min increase in eGDR was associated with 
reduced CVD risk by 14% in the normoglycemia group 
(HR = 0.86, 95%CI: 0.83–0.89), 10% in the prediabetes 
group (HR = 0.90, 95%CI: 0.86–0.93), and 14% in the dia-
betes group (HR = 0.86, 95%CI: 0.81–0.91).

Markers of IR, including Homeostatic Model Assess-
ment of β-cell function (HOMA-β), Quantitative Insulin 
Sensitivity Check Index (QUICKI), and Triglyceride-Glu-
cose (TyG) index, have demonstrated significant asso-
ciations with CVD [45–47]. The eGDR, comprising WC, 
hypertension status, and HbA1c, provides a compre-
hensive assessment of IR that incorporates both labora-
tory values and clinical parameters [25–27]. Compared 
to other IR indices, eGDR offers several advantages for 

CVD risk assessment in clinical practice: it integrates 
multiple metabolic components rather than relying solely 
on glucose and insulin measurements (as with HOMA-β 
and QUICKI) [45–47]; it captures both glycemic parame-
ters and central adiposity, which independently influence 
cardiovascular risk [24]. Furthermore, the eGDR includes 
more complete metabolic markers and valid CVD risk 
assessments across different glucose metabolism statuses 
[26, 30–33], which is better than individual metabolic 
markers such as WC or HbA1c alone [26].

These findings align with several recent studies on 
eGDR and CVD risk. Zhang et al. [31] reported a signifi-
cant inverse association between eGDR and CVD risk in 
non-diabetic individuals (HR = 0.86, 95%CI: 0.83–0.89), 
matching our normoglycemia group findings. Similar 

Table 2 Relationship between eGDR and CVD risk across different glucose metabolism status
Exposure Non-adjusted

HR (95% CI) P value
Adjust I
HR (95% CI) P value

Adjust II
HR (95% CI) P value

Normoglycemia
eGDR (mg/kg/min) 0.86 (0.83, 0.89) < 0.0001 0.87 (0.84, 0.90) < 0.0001 0.87 (0.84, 0.90) < 0.0001
eGDR quartile (mg/kg/min)
 Q1 1.0 1.0 1.0
 Q2 0.76 (0.62, 0.94) 0.0090 0.77 (0.63, 0.94) 0.0115 0.78 (0.63, 0.95) 0.0152
 Q3 0.56 (0.46, 0.69) < 0.0001 0.59 (0.48, 0.73) < 0.0001 0.59 (0.48, 0.73) < 0.0001
 Q4 0.44 (0.36, 0.54) < 0.0001 0.46 (0.37, 0.57) < 0.0001 0.46 (0.37, 0.57) < 0.0001
P for trend < 0.0001 < 0.0001 < 0.0001
Prediabetes
eGDR (mg/kg/min) 0.90 (0.87, 0.93) < 0.0001 0.92 (0.89, 0.95) < 0.0001 0.92 (0.89, 0.95) < 0.0001
eGDR quartile (mg/kg/min)
 Q1 1.0 1.0 1.0
 Q2 0.74 (0.62, 0.88) 0.0006 0.78 (0.65, 0.92) 0.0043 0.77 (0.65, 0.92) 0.0036
 Q3 0.59 (0.49, 0.71) < 0.0001 0.66 (0.54, 0.79) < 0.0001 0.66 (0.55, 0.80) < 0.0001
 Q4 0.60 (0.49, 0.73) < 0.0001 0.65 (0.53, 0.79) < 0.0001 0.65 (0.53, 0.80) < 0.0001
P for trend < 0.0001 < 0.0001 < 0.0001
Diabetes
eGDR (mg/kg/min) 0.85 (0.81, 0.89) < 0.0001 0.85 (0.81, 0.89) < 0.0001 0.88 (0.83, 0.92) < 0.0001
eGDR quartile (mg/kg/min)
 Q1 1.0 1.0 1.0
 Q2 0.54 (0.42, 0.69) < 0.0001 0.54 (0.42, 0.70) < 0.0001 0.58 (0.44, 0.75) < 0.0001
 Q3 0.43 (0.30, 0.61) < 0.0001 0.44 (0.31, 0.63) < 0.0001 0.50 (0.35, 0.73) 0.0002
 Q4 0.34 (0.22, 0.51) < 0.0001 0.35 (0.23, 0.53) < 0.0001 0.43 (0.28, 0.68) 0.0003
P for trend < 0.0001 < 0.0001 < 0.0001
Total
eGDR (mg/kg/min) 0.88 (0.86, 0.89) < 0.0001 0.89 (0.87, 0.90) < 0.0001 0.89 (0.87, 0.91) < 0.0001
eGDR quartile (mg/kg/min)
 Q1 1.0 1.0 1.0
 Q2 0.70 (0.62, 0.78) < 0.0001 0.71 (0.64, 0.80) < 0.0001 0.72 (0.64, 0.81) < 0.0001
 Q3 0.55 (0.48, 0.62) < 0.0001 0.59 (0.52, 0.67) < 0.0001 0.59 (0.52, 0.67) < 0.0001
 Q4 0.48 (0.42, 0.54) < 0.0001 0.51 (0.44, 0.58) < 0.0001 0.52 (0.45, 0.59) < 0.0001
P for trend < 0.0001 < 0.0001 < 0.0001
Non-adjusted model was conducted without adjustment

Adjust I model was adjusted for gender and age

Adjust II model was adjusted for gender, age, living place, education level, marital status, drinking status, smoking status, CRP, WBC, platelets, FPG, BUN, Scr, UA, TG, 
HDL-c, LDL-c, BMI
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Table 3 Threshold effect analysis of eGDR on CVD risk stratified by glucose metabolism status
Model Normoglycemia

HR (95% CI) P value
Prediabetes
HR (95% CI) P value

Diabetes
HR (95% CI) P value

One-line linear regression
 One-line effect 0.87 (0.84, 0.90) < 0.0001 0.92 (0.89, 0.95) < 0.0001 0.88 (0.83, 0.92) < 0.0001
Two-piecewise regression
 Infection points of eGDR (mg/kg/min) 11.77 11.15 11.56
 < Infection points 0.86 (0.83, 0.89) < 0.0001 0.90 (0.86, 0.93) < 0.0001 0.86 (0.81, 0.91) < 0.0001
 ≥ Infection points 1.13 (0.92, 1.37) 0.2409 1.10 (0.97, 1.26) 0.1423 1.29 (0.99, 1.69) 0.0564
P for log-likelihood ratio test 0.025 0.010 0.015
Models were adjusted for gender, age, living place, education level, marital status, drinking status, smoking status, CRP, WBC, platelets, FPG, BUN, Scr, UA, TG, HDL-c, 
LDL-c, BMI

Fig. 3 Non-linear associations between eGDR and CVD risk stratified by glucose metabolism status. The association was evaluated using RCS models. 
Models were adjusted for gender, age, living place, education level, marital status, drinking status, smoking status, CRP, WBC, platelets, FPG, BUN, Scr, UA, 
TG, HDL-c, LDL-c, BMI
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results were found by Ren et al. [26] using CHARLS data 
(HR = 0.89, 95%CI: 0.85–0.93) and Zabala et al. [32] 
in type 2 diabetes patients (HR = 0.85, 95%CI: 0.82–
0.89), which corresponds to our diabetes group results 
(HR = 0.86, 95%CI: 0.81–0.91). These studies consis-
tently demonstrate that higher eGDR protects against 
CVD risk. Despite similarities, our study offers distinct 
advantages and methodological differences. For instance, 
Zhang et al. [31] specifically focused on non-diabetic 
individuals, whereas our study explored the relationship 
between eGDR and CVD risk across all glucose metabo-
lism states, including normoglycemia, prediabetes, and 
diabetes, providing a more comprehensive perspective. 
Compared to Ren et al. [26], we employed advanced 
methods such as RCS and threshold effect analysis, which 
enabled us to identify specific eGDR inflection points 
(11.77, 11.15, and 11.56 mg/kg/min). Additionally, while 
Zabala et al. [32] concentrated on stroke risk in type 2 
diabetes, our study included both stroke and cardiac 
events, allowing for a broader assessment of CVD risk.

Decreased eGDR is associated with increased CVD 
across the spectrum of glucose metabolism, with distinct 
pathophysiological mechanisms in different glycemic 
states. Lower eGDR reflects greater IR [24], which trig-
gers adverse cardiovascular effects varying by glycemic 
status. In normoglycemic individuals, reduced eGDR 
indicates subclinical IR, leading to early endothelial 

dysfunction through impaired nitric oxide bioavailability 
and inflammatory changes [21, 48], exacerbated by dys-
regulated adipokine production and oxidative stress [49]. 
In prediabetes, IR combines with mild hyperglycemia to 
intensify endothelial dysfunction through increased oxi-
dative stress and pro-inflammatory cytokines [50, 51]. 
The mechanism is most prominent in diabetes, where 
severe IR and chronic hyperglycemia synergistically 
enhance cardiovascular risk through oxidative stress-
mediated pathways, advanced glycation end-products 
accumulation, and severe endothelial dysfunction [52, 
53]. With additional complications of dyslipidemia and 
pro-thrombotic states [54], eGDR is important for car-
diovascular risk stratification across different glycemic 
states [55].

Multivariate analysis demonstrated significant CVD 
risk reductions of 11%, 8%, and 12% per unit increase 
in eGDR for normoglycemic, prediabetic, and diabetic 
populations, respectively (P for trend < 0.0001). Strati-
fied analyses across demographic and clinical subgroups 
confirmed the robustness of these associations (all P for 
interaction > 0.05). The non-linear analysis identified dis-
tinct eGDR inflection points (11.77, 11.15, and 11.56 mg/
kg/min for normoglycemia, prediabetes, and diabe-
tes, respectively), with each unit increase below these 
thresholds demonstrating similar cardiovascular protec-
tive effects (14% risk reduction in normoglycemic and 
diabetic groups, 10% in prediabetes). The consistency of 
these associations across the glucose metabolism spec-
trum might suggest a meaningful role of eGDR in cardio-
vascular health. The slightly attenuated protective effect 
observed in prediabetes could possibly reflect the dis-
tinct pathophysiological features of this transitional state, 
characterized by progressive β-cell dysfunction, altered 
incretin responses, and specific patterns of IR [56–58], 
alongside unique inflammatory profiles and oxidative 
stress patterns [59, 60].

These findings may have several potential implica-
tions for cardiovascular health management. First, 
identifying glycemic status-specific thresholds might 
provide reference points for CVD risk assessment. Sec-
ond, the observed association between eGDR and CVD 
risk, regardless of glycemic status, could suggest the 
importance of eGDR in cardiovascular health. Third, the 
relatively consistent protective effects may indicate that 
higher eGDR levels could be associated with cardiovas-
cular benefits across all glycemic states. The persistence 
of these associations throughout different glucose metab-
olism states appears to support a potential role of eGDR 
in CVD protection, which might warrant consideration 
independent of glucose metabolism status. Clinically, 
patients with lower eGDR levels warrant higher surveil-
lance and more aggressive preventive interventions, 
regardless of their glycemic status. These strategies might 

Table 4 Stratified analyses of the association between eGDR 
and CVD risk
Subgroup N HR (95% CI) P value P for in-

teraction
Gender 0.3112
 Male 4136 0.88 (0.86, 0.91) < 0.0001
 Female 3692 0.87 (0.84, 0.90) < 0.0001
Age, years 0.1171
 45–53 2379 0.86 (0.82, 0.90) < 0.0001
 54–61 2634 0.89 (0.85, 0.92) < 0.0001
 62–101 2815 0.90 (0.87, 0.93) < 0.0001
Drinking status 0.3231
 No 4734 0.87 (0.85, 0.90) < 0.0001
 Yes 3094 0.89 (0.86, 0.92) < 0.0001
Smoking status 0.9103
 No 4738 0.88 (0.86, 0.90) < 0.0001
 Yes 3090 0.87 (0.84, 0.90) < 0.0001
Glucose metabolism 
status

0.0712

 Normoglycemia 3255 0.86 (0.83, 0.89) < 0.0001
 Prediabetes 3359 0.90 (0.87, 0.93) < 0.0001
 Diabetes 1214 0.86 (0.82, 0.90) < 0.0001
BMI, kg/m² 0.9815
 <24 4741 0.89 (0.86, 0.92) < 0.0001
 ≥24 3087 0.89 (0.86, 0.92) < 0.0001
Models were adjusted for gender, age, living place, education level, marital 
status, drinking status, smoking status, CRP, WBC, platelets, FPG, BUN, Scr, UA, 
TG, HDL-c, LDL-c, and BMI, except for stratified variables
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target the key components of eGDR: WC, BP and HbA1c. 
This comprehensive approach could more effectively 
reduce CVD risk in these vulnerable patients.

Strengths and limitations
This investigation exhibited several strengths. The analy-
sis utilized a large, nationally representative cohort with 
extended follow-up (mean 8.29 years), enhancing result 
reliability and generalizability. The relationship between 
eGDR and CVD risk was comprehensively examined 
across different glucose metabolism states using RCS and 
threshold effect analysis, to identify non-linear associa-
tions and specific inflection points. The methodological 
robustness was demonstrated through comprehensive 
confounder adjustment and consistent findings across 
stratified analyses. Additionally, the calculated E-value 
indicated strong resistance to potential unmeasured con-
founding, further supporting the validity of the findings.

Several limitations warrant consideration in this study. 
First, CVD outcomes relied solely on self-reported infor-
mation through standardized questionnaires without 
clinical verification, potentially introducing recall bias 
and event misclassification. Second, our analysis lacked 
specificity in cerebrovascular event classification, as we 
did not differentiate between types of stroke, limiting 
the precision of our findings. Third, despite our compre-
hensive adjusted model, we omitted important clinical 
variables that significantly differed among eGDR groups, 
particularly baseline hypertension and CVD history, 
which may restrict the generalizability of our results to 
patients with pre-existing CVD. Future research should 
address these limitations through objective outcome ver-
ification, more precise stroke classification, and inclusion 
of all relevant clinical covariates in statistical analyses.

Conclusions
This large-scale prospective cohort study of 7,828 par-
ticipants aged ≥ 45 years with an average follow-up of 
8.29 years demonstrates a significant non-linear inverse 
association between eGDR and CVD risk across different 
glucose metabolism states, with distinct threshold effects 
identified for normoglycemia (11.77  mg/kg/min), pre-
diabetes (11.15 mg/kg/min), and diabetes (11.56 mg/kg/
min). Below these thresholds, each unit increase in eGDR 
showed consistent cardiovascular protective effects. 
These findings underscore the potential importance of 
eGDR for cardiovascular risk assessment, regardless 
of glucose metabolism status. The consistent protec-
tive effects observed across glycemic states suggest that 
maintaining higher eGDR levels might be beneficial for 
cardiovascular health in all populations. Future studies 
should focus on validating these non-linear relationships 
between eGDR and CVD risk across different age groups 
and ethnic populations.
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