
R E S E A R C H Open Access

© The Author(s) 2025. Open Access  This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 
International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you 
give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the 
licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or 
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit ​h​t​t​p​​:​/​/​​c​r​e​a​​t​i​​
v​e​c​​o​m​m​​o​n​s​.​​o​r​​g​/​l​​i​c​e​​n​s​e​s​​/​b​​y​-​n​c​-​n​d​/​4​.​0​/.

Lin et al. Diabetology & Metabolic Syndrome          (2025) 17:163 
https://doi.org/10.1186/s13098-025-01728-2

Diabetology & Metabolic 
Syndrome

*Correspondence:
Tsai-Chung Li
tcli@mail.cmu.edu.tw
1School of Medicine, College of Medicine, China Medical University, 
Taichung, Taiwan
2Department of Family Medicine, China Medical University Hospital, 
Taichung, Taiwan

3Department of Medical Research, China Medical University Hospital, 
Taichung, Taiwan
4Department of Public Health, College of Public Health, China Medical 
University, No. 100, Sec. 1, Jingmao Rd., Beitun Dist, Taichung City  
406040, Taiwan
5Department of Audiology and Speech-Language Pathology, College of 
Medical and Health Sciences, Asia University, Taichung, Taiwan

Abstract
Background  This study aimed to examine the associations between visit-to-visit variability in fasting plasma 
glucose (FPG) and HbA1c with echocardiographic variables in patients with type 2 diabetes using epidemiologic and 
Mendelian randomization (MR) methods.

Methods  From January 2001 to December 2020, 2,326 (1,233 men and 1,093 women) subjects with type 2 diabetes 
who underwent echocardiography assessment were enrolled in the diabetes care management program of a medical 
center in Taiwan. The echocardiographic variables included those for cardiac structural, cardiac systolic, and diastolic 
function. Variability in FPG and HbA1c within one-year prior echocardiographic measurements was calculated using 
coefficient of variation (CV). A two-stage multivariable regression analysis was used to assess the causal relationship 
among FPG-CV, HbA1c-CV, and echocardiographic variables using 22 SNPs for FPG and 14 SNPs for HbA1c as 
instrumental variables.

Results  A total of 2,326 participants were included, with a mean age of 64.5 years and 53.0% were men. 
Epidemiologic and MR analyses show the significant associations between left atrium diameter (LAD), left ventricular 
systolic diameter (LVSd), left ventricular mass (LVM), left ventricular ejection fraction (LVEF), E, and E/e’ ratio with FPG 
variability. Significant associations between HbA1c variability and echocardiographic variables including LAD, E/e’, 
and deceleration time identified in the epidemiologic approach became non-significant in the MR analysis when 
controlling for covariates.

Conclusions  Our epidemiologic and MR studies demonstrated that visit-to-visit variability of FPG in patients with 
type 2 diabetes was independently associated with the left cardiac structure as well as systolic and diastolic function.
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Background
The global pandemic of type 2 diabetes is driven by 
urbanization, aging populations, and rising obesity 
due to energy-rich diets and sedentary lifestyles, and it 
affects advanced and developing countries. The preva-
lence of type 2 diabetes surged from 151 million in 2000 
to 537  million in 2021, which exceeded the projected 
300  million for 2021 [1, 2]. This disease leads to seri-
ous complications, including macrovascular issues, such 
as stroke, coronary heart disease, and peripheral arte-
rial disease, as well as microvascular conditions. These 
complications place a significant burden on healthcare 
systems [3]. Cardiovascular diseases, including coronary 
heart disease and stroke, were the leading cause of death 
globally, accounting for more than 30% of deaths in 2016 
[4]. A meta-analysis of 102 studies found that adults with 
diabetes have two to four times the risk of coronary heart 
disease and ischemic stroke, and 1.5 to 3.6 times the risk 
of mortality compared with those without diabetes; the 
risk increases with poor glycemic control [5].

Glycemic control is crucial for managing diabetic com-
plications, with glycosylated hemoglobin (HbA1c) often 
considered the “gold standard” marker. However, ran-
domized control trials have shown that reducing blood 
glucose levels does not necessarily decrease the incidence 
of diabetic complications [6, 7]. These studies do not 
account for glucose variability, which refers to extreme 
fluctuations in glucose levels over time and could be 
linked to complications. Recent research has focused on 
“glucose variability” and its relationship to diabetes com-
plications and mortality [8, 9]. Experimental evidence 
has not been established with regard to the detrimental 
effects of glucose variability. Therefore, further investiga-
tion is needed to establish a causal relationship between 
glucose variability and adverse outcomes through experi-
mental methods. In the absence of randomized trials 
specifically addressing glucose variability and outcomes, 
Mendelian randomization (MR) offers an alternative 
approach to provide experimental evidence and assess 
causality.

Echocardiography is a rapid, non-invasive imaging 
technique used to assess cardiac function and detect 
ventricular wall motion abnormalities. It measures struc-
tural variables such as left ventricular diastolic diameter 
(LVDd) and left atrium diameter (LAD) as well as func-
tional variables including left ventricular ejection fraction 
(LVEF) and E/A ratio. These echocardiographic variables 
are valuable for cardiac risk stratification and optimizing 
clinical outcomes [10]. High-risk echocardiographic fea-
tures are linked to increased mortality risk [11]. Systolic 
and diastolic function markers from echocardiography 
are used to predict subclinical myocardial dysfunction 
and its progression to clinical heart failure [10].

A review of the literature revealed limited studies that 
used traditional epidemiologic designs to explore the 
associations between glucose variation and echocar-
diographic variables [12, 13]. One study was conducted 
in the general population [12], while another involved 
a small sample of individuals with type 2 diabetes [13]. 
Given the limited number of studies and small sample 
sizes, we investigated the associations between glucose 
variation and echocardiographic variables using observa-
tional epidemiologic and MR approaches.

Methods
Study design and study subjects
This cross-sectional study included participants enrolled 
between November 2001 and December 2020 in the Dia-
betes Care Managed Program (DCMP). Established in 
2001, DCMP is a case management program designed 
to improve the quality of diabetes care and reduce the 
risk of complications through intensive monitoring, con-
tinuous care, and encouraging members to implement 
healthy lifestyle choices. The inclusion criteria were a 
diagnosis of diabetes (ICD-9-CM code 250 before 2016 
or ICD-10-CM code E0800 after 2016) and age 30 years 
or older. Additionally, participants had to have under-
gone an echocardiographic examination. Initially, 6,960 
individuals were enrolled in the DCMP at a medical cen-
ter in Taiwan. The exclusion criteria included a diagnosis 
of type 1 diabetes (ICD-9-CM codes 250.x1/x3; ICD-
10-CM code E10.9), gestational diabetes (ICD-9-CM 
code 648.83; ICD-10-CM code O24.419), and age under 
30 years (n = 44). After applying these exclusions, 3,611 
participants were retained in the dataset. Further exclu-
sion for missing data on laboratory tests, anthropometric 
measurements, and comorbidities reduced the sample to 
2,326 participants (Supplementary Fig. 1). The index date 
was defined as the date of the first echocardiographic 
assessment. If individuals had multiple echocardio-
graphic examinations, then only the first was used. Mea-
surements for other variables were taken from the closest 
date to the index date.

Data source
Data were obtained from the computerized database 
of the DCMP of China Medical University Hospital 
(CMUH) in Taichung, Taiwan. DCMP comprises patients 
with type 2 diabetes diagnosed based on the American 
Diabetes Association guideline. In DCMP, health care 
providers should participate in clinical education and 
training programs. The health care team consists of phy-
sicians of various specialties, including endocrinology, 
family medicine, internal medicine, cardiology, nephrol-
ogy, and others. The continuing education and train-
ing programs in DCMP promote the standardization of 
clinical practices, such as assessment, monitoring glucose 
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control, and diagnosis of diabetic complications. Coordi-
nated care is provided by physician-led multidisciplinary 
teams, including physicians and their care managers who 
worked in adherence to the established clinical guidelines 
for diabetes care. The DCMP database provides informa-
tion on diabetes care, including annual self-care educa-
tion and assessments, annual eye tests, and quarterly 
screening tests for blood sugar, cholesterol, and kidney 
function.

Measurements
Before joining the DCMP, participants underwent a series 
of tests, including blood and urine analyses. They were 
also interviewed by a case manager using a standard-
ized computerized questionnaire to collect data on their 
dietary habits, lifestyle, and medical history, including 
previous or current disease status. These tests and inter-
views were conducted annually or quarterly. Sociode-
mographic factors included age at entry to DCMP, sex, 
and family history of diabetes, hypertension, hyperlip-
idemia, and obesity. Lifestyle behaviors assessed in this 
study included smoking status, alcohol consumption, 
and exercise habits. These variables were dichotomized 
(yes vs. no) based on participants’ self-reported informa-
tion. Individuals were classified as nonsmokers if they 
reported never having smoked or had not smoked con-
tinuously for at least six months. Alcohol consumption 
was defined as affirmative if participants reported drink-
ing at least 150  cc of alcohol per week on a continuous 
basis for six months. Physical activity was categorized as 
“yes” if participants reported engaging in exercise at least 
three times per week, with each session lasting more than 
30 min; otherwise, it was classified as “no.”

Anthropometric measurements included height, 
weight, body mass index (BMI), and blood pressure (BP). 
Weight and height were recorded using an auto-anthro-
pometer (Super-view HW-666). An auto-anthropometer 
is a device designed to automatically measure various 
anthropometric parameters, such as height, weight, and 
systolic and diastolic blood pressure, with minimal 
manual intervention. Its key features include automated 
operation to reduce human error and operator bias, the 
ability to measure multiple body dimensions in a single 
session, and applicability in both research and clinical 
settings. The participants removed their shoes and wore 
light clothing. BMI was calculated using the formula: 
weight (kg) / (height (m)) 2. BP was measured in the right 
arm with an electronic sphygmomanometer (OMRON 
HEM-770  A, Japan) using an appropriately sized cuff, 
while the participant was seated in a quiet environment. 
The device’s accuracy was validated against the European 
Society of Hypertension International Protocol Revision 
2010 [14]. If multiple BP readings were taken in a single 
day, the average value was used.

Baseline comorbidities included obesity, hypertension, 
and hyperlipidemia. Diabetic complications at baseline 
were classified into acute and chronic categories. Acute 
complications encompassed severe hypoglycemia, hyper-
glycemic hyperosmolar nonketotic coma, and diabetic 
ketoacidosis. Chronic complications included neuropa-
thy, peripheral vascular disease, nephropathy, stroke, 
diabetic foot, amputation, and diabetic retinopathy. All 
comorbidities and complications were categorized into 
two groups: yes or no.

Diabetes-related variables included duration of the 
disease. Anti-diabetes treatments were categorized into 
oral medications and insulin injections. Oral medications 
were further divided into seven categories: meglitinides, 
sulfonylureas, α-glucosidase inhibitors, biguanides, 
dipeptidyl peptidase 4 inhibitors, insulin sensitizers, 
and other compounds. Medication-related variables also 
included treatments for hypertension (e.g., calcium chan-
nel blockers), hyperlipidemia (e.g., statins [HMG-CoA 
reductase inhibitors]), and nephropathy. Participants 
were classified into two groups based on their use of 
other medications, as recorded in their electronic medi-
cal records (yes vs. no).

Blood samples were drawn from the antecubital vein 
in the morning following a 12-hour overnight fast and 
analyzed within 4  h of collection. Laboratory tests 
included HbA1c, fasting plasma glucose (FPG), triglyc-
erides (TG), low-density lipoprotein cholesterol (LDL-
C), high-density lipoprotein cholesterol (HDL-C), total 
cholesterol (TC), serum creatinine, uric acid (UA), and 
protein levels from urinalysis. These biochemical mark-
ers were analyzed using a biochemical auto-analyzer 
(Beckman Coulter Synchron system, Lx-20, Fullerton, 
CA, USA) in the Clinical Laboratory Department of 
CMUH. The urine albumin-to-creatinine ratio (uACR) 
from the morning urine sample was used to determine 
albumin excretion rate. The estimated glomerular filtra-
tion rate (eGFR) was calculated from serum creatinine 
levels using the Chronic Kidney Disease Epidemiology 
Collaboration (CKD-EPI) equation. Glucose variability 
measures were calculated based on data collected during 
the year preceding the index date, defined as the date of 
the first echocardiographic assessment. For each patient, 
the coefficients of variation (CV) for FPG (FPG-CV) and 
HbA1c (HbA1c-CV) were derived using outpatient mea-
surements obtained within the first year from the index 
date. These measures were calculated only for individuals 
with more than two FPG and HbA1c measurements dur-
ing that period. To account for variability in the number 
of visits across individuals, the CV value were adjusted by 
dividing by the square root of the ratio of total visits to 
total visits minus 1 [15].
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Instrumental variables
SNPs genotyping in MR analysis
In MR analysis, single nucleotide polymorphism (SNP) 
data served as instrumental variables and were obtained 
from iHi Genomics, CMUH [16]. These data originated 
from DNA samples genotyped with TPM array and 
processed on Axiom genome-wide array plate system 
(Affymetrix, Santa Clara, CA, USA). PLINK (v2.0) was 
employed to evaluate Hardy–Weinberg equilibrium for 
all selected SNPs. IMPUTE2 was utilized for data impu-
tation using 1000 Genomes Project as a reference. The 
selection of genetic variants was based on existing lit-
erature employing candidate genes and genome-wide 
association study (GWAS) approaches for HbA1c [17–
19] and FPG [20, 21]. A comprehensive list of selected 
genetic variants for FPG and HbA1c was compiled. Our 
literature review found hundreds of loci associated with 
HbA1c through glycemic pathways, including CDKAL, 
MTAP, DGKB, SLC30A8, GCK, and KL, as well as loci 
associated with nonglycemic pathways such as TRAM2-
AS1, SPATS2L, SPATS2L, KCNKS, RPA2P2, and ARAP3 
[17–19]. Additionally, dozens of loci were found to be 
associated with FPG, including ANK1, HFE, HK1, MYB, 
and PHB2 [20, 21]. We further explored SNPs in MR lit-
erature [22–29], particularly those linked to possible bio-
logical mechanisms of glucose variation. A total of 536 
SNPs found in the GWAS data of iHi Genomics were 
pooled, with SNPs not found in iHi genomics dataset or 
with minor allele frequencies < 5% were excluded. After 
removing SNPs that did not meet MR assumptions 1 and 
3 (SNP = 498) and those in high-linkage disequilibrium 
(SNP = 5), we included 33 SNPs in the analysis (22 for 
HbA1c-CV and 14 for FPG-CV, with 3 SNPs overlapping 
between the two traits). This study was approved by the 
Human Research Committee of China Medical Univer-
sity Hospital (CMUH112-REC1-007) and conducted in 
accordance with relevant regulations and guidelines.

Outcome measures: echocardiographic examinations
Echocardiographic examinations were conducted by 
an experienced cardiologist using a transthoracic echo-
cardiography machine (Vivid 7, GE Medical Systems, 
Horten, Norway) with a 3.5-MHz transducer, following a 
standardized protocol. Parameters were assessed accord-
ing to the American Society of Echocardiography (ASE) 
guidelines [30, 31]. Patients were positioned in the left 
lateral decubitus position and were instructed to breathe 
quietly. In brief, 2D-guided M-mode images were cap-
tured from a standardized view. For measuring left ven-
tricular inflow waveforms, the Doppler sample volume 
was positioned at the tip of the mitral leaflets from the 
apical four-chamber view. Sample volumes were aligned 
with the ultrasonic beam to the direction of flow. Tissue 
Doppler imaging was performed by placing the sample 

volume at the lateral corner of the mitral annulus from 
the apical four-chamber view. Wall filter settings were 
adjusted to exclude high-frequency signals, and the gain 
was minimized to the lowest possible level.

Cardiac structural parameters assessed included LAD, 
LVDd, left ventricular mass (LVM), and left ventricular 
systolic diameter (LVSd). Cardiac systolic function was 
evaluated using the LVEF, which was measured visually 
using Quinones method. Indicators of cardiac diastolic 
function included peak spectral transmittal flow veloci-
ties such as atrial diastolic velocity (A), mitral early dia-
stolic velocity (E), E/A ratio, and deceleration time of the 
E wave.

Statistical analysis
Descriptive statistics, including mean and standard 
deviation, were used to summarize continuous variables, 
while frequency and proportion were reported for cat-
egorical variables. For bivariate analysis, a two-sample 
t-test was conducted for continuous variables, and Chi-
square tests were used for categorical variables.

To develop multiple linear regression models, we fol-
lowed these steps. First, univariate models were created 
for key independent variables (glucose variation in FPG 
and HbA1c) and all covariates, selecting variables with 
p-values < 0.25 for the next step [21]. Second, glucose 
variation in FPG and HbA1c were individually added to 
multivariate models along with the candidate covariates 
identified in the first step to determine their statistical 
significance (p-value < 0.05). Multiple linear regression 
models were then used to estimate regression coeffi-
cients. All analyses were conducted using SAS version 9.4 
(SAS, Cary, NC). P-values were two-tailed, with signifi-
cance set at p < 0.05.

MR analysis
First, quality control (QC) procedures were performed. 
This included excluding individuals with a high miss-
ing genotyping rate, those with extreme heterozygosity 
rate, and duplicated or related individuals. Additionally, 
SNPs with a high missing genotyping rate, low frequency, 
or deviation from Hardy-Weinberg equilibrium were 
removed. Hardy-Weinberg equilibrium was assessed in 
control participants using Chi-square test.

The assumptions of MR analysis were evaluated 
through the following steps. First, we analyzed the rela-
tionships between glucose variability and glucose-related 
SNPs, assessing SNP-level MR assumption 1 using 
ANOVA. For SNP-level MR assumption 3, we examined 
the relationships between echocardiographic variables 
and glucose-related genotypes using Chi-square tests 
to determine whether the selected SNPs could serve 
as instrumental variables for MR analysis. Only SNPs 
that satisfied MR assumptions 1 and 3 were retained for 
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deriving weighted and unweighted genetic risk score 
(GRS). Assumption 1 indicates that genetic variants are 
associated with glucose variability while assumption 3 
indicates that there is no association between genetic 
variants and echocardiographic variables. The associa-
tions of selected SNPs with glucose variability were quan-
tified by linear regression. Each SNP was coded as 0, 1, or 
2 according to the number of minor alleles, following an 
additive model.

Before estimating GRS, we analyzed the linkage dis-
equilibrium (LD) between SNPs that satisfied MR 
assumptions 1 and 3. Pairwise LD among the selected 
SNPs was estimated by correlation coefficient r2 in Hap-
loview (v4.2). If two SNPs have r2 > 0.8, then we selected 
one of them based on which SNP was the most common 
associated with glucose-related genes in literature. Only 
SNPs with a low LD were retained for deriving GRS. We 
constructed the weighted GRS by multiplying the esti-
mated coefficients of the regression model of each gen-
otype by the number of minor alleles for each retained 
SNP, and then summing the products across all retained 
SNPs. Weighted GRSs were further categorized into 
quartiles for data analyses to assess the assumption of 
linearity for linear regression. We also assessed the linear 
trend for weighted GRSs by treating them as continuous 
variables.

Linear regression models were employed to explore the 
associations between GRSs and glucose variability vari-
ables to verify the GRS-level MR assumption (1) Next, we 
assessed MR assumption (2) Multinomial logistic regres-
sion models were used to determine whether the selected 
covariates could serve as confounders for MR analysis 
by exploring the associations between the GRSs and the 
covariates. As for the GRS-level MR assumption 3, linear 
regression models were applied to investigate the associa-
tions between the GRSs and echocardiographic variables.

For MR analyses, the causal association of glucose 
variability on echocardiographic variables were quanti-
fied using instrumental variable analyses with two-stage 
regression and multivariate adjustment. The first stage 
involved linear regression, with glucose variability as the 
dependent variables and weighted GRSs as the indepen-
dent variables, to determine whether GRSs could pre-
dict glucose variation. The predicted glucose variability 
derived from the linear regression was referred to as the 
genetic predicted-glucose variability. The second stage 
consisted of using the predicted glucose variability esti-
mated from the first stage as the independent variable, 
while the echocardiographic variables were treated as 
the dependent variable in linear regression analyses. The 
analyses were conducted with adjustments for covariates. 
The covariates in this stage included residuals estimated 
from the first stage, covariates of demographic factors, 
and lifestyle behavior that did not satisfy MR assumption 

2 and the top 10 principal components from principal 
component analysis (PCA) of all SNPs in the GWAS data. 
In addition, all SNPs that met the MR assumptions were 
assessed for potential horizontal pleiotropy using MR-
Egger regression. All reported p-values were two-sided, 
and the level of significance was set at 0.05.

Results
Baseline characteristics of study subjects
Among the 2,326 individuals with type 2 diabetes 
included in this study, 1,233 (53.0%) were men. Table  1 
indicates that men were significantly younger (P < 0.001) 
and had a higher prevalence of smoking, alcohol con-
sumption, and physical activity (P < 0.001, P < 0.001, and 
P = 0.03, respectively). Men also had a higher prevalence 
of no medication use, oral anti-diabetic drug use, or insu-
lin injection alone, but a lower prevalence of combined 
oral anti-diabetic drug and insulin injection use (P = 0.03). 
Additionally, men were more commonly diagnosed with 
coronary artery disease (P < 0.001), neuropathy (P = 0.02), 
and nephropathy (P = 0.01) and were more likely to be on 
cardiovascular medication (P < 0.001).

The association between glucose variability and 
echocardiographic variables using epidemiologic 
approach
Table 2 shows the association between glucose variabil-
ity and echocardiographic variables. In the age- and sex-
adjusted models, all echocardiographic variables were 
significantly associated with variability in FPG, except 
for LADd, s’, and E/A ratio. After adjusting for lifestyle 
behavior and baseline blood glucose, the significant 
associations remained the same, with the exception that 
LVDd became significant. Further adjustment for comor-
bidities and medication did not change the significant 
associations, with the exception that LVDd and e’ became 
insignificant. Among these significant associations, LVEF 
(β=-0.74, p < 0.001) and deceleration time (β=-4.41, 
p < 0.01) showed a negative association, that is, high val-
ues of LVEF and deceleration time were associated with 
low glucose variability. By contrast, the other parameters 
exhibited positive associations (β = 0.42 for LAD, p < 0.01; 
β = 0.39 for LVSd, p < 0.01; β = 4.02 for LVM, p < 0.001; 
β = 0.02 for E, p < 0.001; and β = 0.39 for E/e’, p < 0.001). 
The values of R-squared in the final models ranged from 
0.06 (LVEF and E) to 0.22 (e’).

In the age- and sex-adjusted models, all echocardio-
graphic variables were significantly associated with 
variability in HbA1c, except for LAD, LVDd, LVM, E, s’, 
and E/A ratio. After adjusting for lifestyle behavior and 
baseline blood glucose, the significant associations for 
E/e’ and deceleration time remained the same, while 
LAD became significant and LVSd, LVEF, and e’ became 
insignificant. Further adjustment for comorbidities and 
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medication did not change the significant associations. 
Among these significant associations, deceleration time 
(β=-3.04, p < 0.05) showed a negative association, indi-
cating that high values of deceleration time were associ-
ated with low glucose variability. By contrast, the other 
parameters exhibited positive associations (β = 0.32 for 
LAD, p < 0.05; and β = 0.21 for E/e’, p < 0.001). The values 
of R-squared in the final models ranged from 0.05 (LVEF 
and E) to 0.22 (e’).

Assessment of MR assumptions 1 and 3 in SNP level
The assessment of whether glucose-related SNPs satisfy 
SNP-level MR assumptions 1 and 3 was conducted using 
an additive model. Supplementary Table 1 displays the 
regression coefficients of significant SNPs that met MR 
assumptions 1 and 3 for glucose variation measures and 
echocardiographic variables (all p < 0.05 for glucose vari-
ables, and all p > 0.05 for echocardiographic variables). 
Considering that SNPs satisfied MR assumptions 1 and 
3, the LD of these SNPs were examined (Supplemen-
tary Fig.  2). The number of SNPs of echocardiographic 

Table 1  Comparisons of sociodemographic factors, lifestyle behaviors, diabetes-related variables, glucose variation and comorbidities 
according to sex

Total Sex, N (%)
Variables (n = 2,326) Men (n = 1,233) Women (n = 1,093) P value
Sociodemographic factors
Age, years✝ 64.54 ± 11.21 62.9 ± 11.13 66.4 ± 11.02 < 0.001
Lifestyle behaviors
Smoking < 0.001
No 2003 (86.11) 932 (75.59) 1071 (97.99)
Yes 323 (13.89) 301 (24.41) 22 (2.01)
Alcohol drinking < 0.001
No 2176 (93.55) 1088 (88.24) 1088 (99.54)
Yes 150 (6.45) 145 (11.76) 5 (0.46)
Physical activity 0.03
No 1226 (52.71) 624 (50.61) 602 (55.08)
Yes 1100 (47.29) 609 (49.39) 491 (44.92)
BMI, kg/m2✝ 26.53 ± 4.35 26.54 ± 4.06 26.52 ± 4.65 0.89
Diabetes-related variables
Duration of diabetes, years✝ 6.85 ± 7.42 6.58 ± 7.29 7.16 ± 7.56 0.06
Type of hypoglycemic drug use 0.03
No 75 (3.22) 41 (3.33) 34 (3.11)
OAD 1870 (80.4) 1005 (81.51) 865 (79.14)
Inject insulin 40 (1.72) 27 (2.19) 13 (1.19)
Both 341 (14.66) 160 (12.98) 181 (16.56)
Comorbidity
Hypertension 978 (42.05) 507 (41.12) 471 (43.09) 0.36
Hyperlipidemia 624 (26.83) 320 (25.95) 304 (27.81) 0.34
Obesity 583 (25.06) 297 (24.09) 286 (26.17) 0.27
Coronary artery disease 153 (6.58) 110 (8.92) 43 (3.93) < 0.001
Stroke 95 (4.08) 52 (4.22) 43 (3.93) 0.81
Peripheral neuropathy 175 (7.52) 90 (7.3) 85 (7.78) 0.72
Neuropathy 29 (1.25) 22 (1.78) 7 (0.64) 0.02
Nephropathy 140 (6.02) 89 (7.22) 51 (4.67) 0.01
Drug-related variables
Hypertension medications 875 (37.62) 474 (38.44) 401 (36.69) 0.41
Hyperlipidemia medications 442 (19.00) 222 (18.00) 220 (20.13) 0.21
Cardiovascular medications 666 (28.63) 401 (32.52) 265 (24.25) < 0.001
Biomarker✝
FPG (mg/dl) 140.01 ± 49.58 141.25 ± 51.82 138.62 ± 46.9 0.20
HbA1c (%) 7.61 ± 1.36 7.60 ± 1.34 7.62 ± 1.39 0.70
Differences in continue variables were tested using the Student’s t test. Differences in categorical variables were tested using the chi-square test

FPG: Fasting plasma glucose; HbA1c: Hemoglobin A1c

✝: data are presented as mean ± standard deviation (SD)
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variables retained included 22 SNPs for FPG-CV and 14 
for HbA1c-CV. The weighted genetic risk scores were 
derived using these glucose variation-associated SNPs.

Assessment of MR assumptions 1, 2 and 3 in genetic risk 
score level
We then examined the genetic risk score-level MR 
assumption 1, that is, the associations between weighted 
genetic risk scores and glucose variability measures (Sup-
plementary Table 2). The results revealed that weighted 
genetic risk scores were significantly positively associ-
ated with glucose variability measures with and with-
out adjustment, that is, satisfying assumption (1) As 
the weighted genetic risk scores increase, the scores of 
glucose variability measures increase. We then exam-
ined the MR genetic risk score-level MR assumption 3 
(Supplementary Table 3). Supplementary Table 4 lists 
the covariates that did not meet MR assumption (2) To 
test the horizontal pleiotropy, MR-Egger regression was 
performed. The absolute values of the intercepts for 
echocardiographic variables range from 0.0004 to 0.83 
(Supplementary Table 5). All intercepts were not sig-
nificantly different from zero (all p > 0.05), suggesting no 
apparent horizontal pleiotropy. The exception was LVM, 
for which the MR-Egger intercept suggested potential 
pleiotropy.

The association between glucose variability and 
echocardiographic variables using MR approach
Table  3 presents the regression coefficients of echo-
cardiographic variables for genetic-related glucose 

variability that were derived from the weighted GRS 
with adjustment. After adjusting for residuals, LAD, 
LVSd, LVM, E, and E/e’ ratio were positively associated 
with weighted genetic-related FPG-CV while LVEF and 
e’ were negatively associated. After additionally adjust-
ing for PCA, these significant associations remained the 
same. After further adjustment for covariates that did 
not satisfy MR assumption 2, the significant associations 
persisted, except that LVDd became significant. Among 
these significant associations, LVEF (β=-0.41, p < 0.05) 
and e’ (β=-0.1, p < 0.05) showed negative associations, 
indicating that high values of LVEF and e’ were linked to 
low glucose variability. By contrast, the other parameters 
exhibited positive associations (β = 0.38 for LAD, p < 0.01; 
β = 0.25 for LVDd, p < 0.05; β = 0.30 for LVSd, p < 0.05; 
β = 2.49 for LVM, p < 0.01; β = 0.01 for E; and β = 0.42 for 
E/e’ ratio).

After adjusting for residuals, LVSd, e’, and s’ were 
positively associated with weighted genetic-related 
HbA1c-CV, while LVEF, E/e’, and deceleration time were 
negatively associated. After additionally adjusting for 
PCA, these significant associations remained unchanged. 
However, upon further adjustment for covariates that did 
not satisfy MR assumption 2, all significant associations 
became non-significant.

Discussion
This study comprehensively examined the independent 
associations between glucose variability with various 
echocardiographic variables using epidemiologic and 
MR approaches. All tested echocardiographic variables 

Table 3  Association of echocardiographic variables for predictive FPG-CV and HbA1c-CV derived from unweighted and weighted GRS 
using MR approach

wGRS FPG−CV per 1 SD wGRS HbA1c−CV per 1 SD
Echocardiographic variables Model 1 Mode 2 Model 3 Model 1 Mode 2 Model 3

β (SE) β (SE) β (SE) β (SE) β (SE) β (SE)
Cardiac structural parameters
  LAD (mm) 0.33 (0.12)** 0.34 (0.12)** 0.38 (0.12)** 0.14 (0.12) 0.14 (0.12) 0.20 (0.13)
  LVDd (mm) 0.17 (0.12) 0.17 (0.12) 0.25 (0.12)* 0.21 (0.12) 0.20 (0.12) 0.20 (0.13)
LVSd (mm) 0.29 (0.12)* 0.28 (0.12)* 0.30 (0.12)* 0.32 (0.12)** 0.31 (0.12)** 0.24 (0.13)
  LVM (g) 2.05 (0.84)* 2.07 (0.84)* 2.49 (0.86)** 1.34 (0.84) 1.35 (0.84) 0.81 (0.90)
Cardiac systolic function
  LVEF (%) -0.50 (0.17)** -0.49 (0.17)** -0.41 (0.18)* -0.48 (0.17)** -0.47 (0.17)** -0.32 (0.18)
Cardiac diastolic function
  E 0.01 (0.004)** 0.01 (0.004)** 0.01 (0.004)** 0.00 (0.004) 0.00 (0.004) 0.00 (0.004)
  e’ -0.15 (0.04)*** -0.15 (0.04)*** -0.10 (0.04)* 0.15 (0.04)*** 0.15 (0.04)*** 0.03 (0.04)
  s’ -0.05 (0.03) -0.05 (0.03) 0.00 (0.04) 0.12 (0.03)*** 0.12 (0.03)*** 0.06 (0.03)
  E/A ratio -0.01 (0.01) -0.01 (0.01) -0.01 (0.01) 0.01 (0.01) 0.01 (0.01) -0.01 (0.01)
  E/e’ ratio 0.55 (0.09)*** 0.56 (0.09)*** 0.42 (0.09)*** -0.20 (0.09)* -0.19 (0.09)* -0.03 (0.09)
  Deceleration time (msec) 0.05 (1.23) 0.07 (1.23) 0.10 (1.30) -3.99 (1.23)** -4.01 (1.23)** -1.03 (1.31)
Model 1 adjusted for residuals

Model 2 adjusting for residuals and PCA

Model 3 adjusting for residuals, PCA and confounding variables

*: P < 0.05; **: P < 0.01; ***: P < 0.001; OR: odds ratio; CI: Confidence interval
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were significantly associated with glucose variability in 
FPG, except for LVDd, e’, s’, and E/A. Only LAD, E/e’, and 
deceleration time were associated with HbA1c variability 
using epidemiologic approach. Additionally, the regres-
sion coefficients indicated that FPG variability had a 
greater association on echocardiographic variables com-
pared with HbA1c variability. The MR analysis confirmed 
the significant associations between LAD, LVSd, LVEF, E, 
and E/e’ ratio with FPG variability. The significant associ-
ations between HbA1c variability and echocardiographic 
variables, including LAD, E/e’, and deceleration time 
identified in epidemiologic approach became non-signif-
icant in the MR analysis when controlling for covariates.

Our study findings, based on an epidemiological 
approach, highlight the importance of stabilizing glucose 
levels, not merely focusing on cutoff point targets. The 
findings that most echocardiographic variables (with a 
few exceptions) are associated with FPG variability sug-
gests that FPG variability may have a broader implication 
for cardiac structure and function than HbA1c variabil-
ity. In contrast, HbA1c variability is linked specifically to 
diastolic function and left atrial size. LAD, E/e’, and DT 
are markers of diastolic dysfunction or increased filling 
pressure—often early signs of diabetic cardiomyopathy or 
heart failure with preserved ejection fraction. However, 
these associations were not confirmed by MR analysis. 
Instead, the MR study provides genetic evidence support-
ing a potential causal role of FPG variability in adverse 
changes in cardiac structure (e.g., LV hypertrophy, atrial 
enlargement) and function (both systolic and diastolic). 
These findings highlight that even in the absence of sus-
tained hyperglycemia, unstable fasting glucose levels may 
independently contribute to the early heart disease pro-
cesses in individuals with diabetes.

Diabetes is associated with an increased risk of heart 
failure, with LVDd being one of early cardiac changes 
in people with diabetic cardiomyopathy [32, 33]. Insu-
lin resistance and metabolic syndrome are potential 
underlying mechanisms that lead to diabetic cardiomy-
opathy [33]. Substantial evidence indicates that echocar-
diographic variables can help stratify the risk of mortality 
in patients with type 2 diabetes [34, 35]. Therefore, iden-
tifying risk factors associated with these echocardio-
graphic variables is clinically important.

Few studies have explored the association between 
visit-to-visit variability in blood glucose with echocardio-
graphic variables [12, 13]. One study assessed the risk of 
LVDd using a composite measure of echocardiographic 
variables, including LEVF, E/e’ ratio, LVMI, and LAVI. 
This study found an association between visit-to-visit 
variability of FPG and LVDd but not with visit-to-visit 
variability of HbA1c in adults aged 20 years and over who 
underwent two or more serial screening echocardio-
grams during annual or biennial health evaluations from 

January 2006 to July 2016 [12]. Although the interval for 
measuring FPG was longer in that study (annual vs. our 
4-month period), our findings are consistent with this 
prior study because the components of LVDd were sig-
nificantly associated with FPG variability but not with 
HbA1c variability.

Another study by Tang X et al. explored the association 
between visit-to-visit FPG variability and changes in the 
left cardiac structure and function in 455 patients with 
type 2 diabetes over a follow-up period of 4.7 years using 
an epidemiologic approach [13]. Their findings showed 
that annual changes in LVMI and LVEF are associated 
with FPG variability. These results found in the study 
of Tang X et al. are consistent with our findings, which 
demonstrate that one-year FPG variability was linked to 
subsequent measures of left cardiac structure (includ-
ing LAD, LVDd, and LVSd) and function (LVEF). Addi-
tionally, our study is the first to investigate the causal 
relationship between genetically predicted glycemic vari-
ability traits and echocardiographic variables using MR 
approach and a robust set of > 500 SNPs as instrumental 
variables for glycemic trait and data from a large cohort 
of individuals with type 2 diabetes.

Glucose variability is an important indicator of glyce-
mic status in addition to blood glucose control. However, 
the preferred method for measuring glucose variability 
has not reached consensus. This study adopted a relative 
long-term visit-to-visit variation, rather than focusing on 
hypoglycemic or hyperglycemic episodes, or within-day 
glucose variability. The significance of daily blood glucose 
variability differs from that observed during outpatient 
visits. Daily variability is influenced by the short-term 
effects of daily diet and medication, while outpatient 
variability relates to the long-term maintenance of medi-
cation and lifestyle choices. The advantage of the latter 
approach is that, under managed care, routine outpa-
tient visits facilitate consistent measurement of blood 
glucose levels. Wide variation in outpatient variability 
may indicate suboptimal medication management and 
a complicated clinical course. Visit-to-visit variation is 
consistently associated with diabetes-related complica-
tions and mortality in patients with type 2 diabetes [34, 
36]. In the present study, the CV of FPG and HbA1c was 
used as a statistical measure to indicate relative variability 
compared with the mean; hence, it can be used to deter-
mine the degree of variation between FPG and HbA1c. 
In addition, the CV and standard deviation are the most 
commonly used measures in the literature.

Possible biological mechanisms involved in the patho-
physiological processes linking glucose variability to 
cardiovascular consequences include inflammatory cyto-
kines [37], oxidative stress [38], and epigenetic changes 
[39]. Inflammatory cytokines [37] and platelet activation 
[37, 38] are implicated in the effects of hypoglycemia. 
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These adverse molecular and systemic changes lead to 
endothelial damage and dysfunction [40], which subse-
quently contribute to cardiovascular issues, as measured 
by cardiac function via echocardiography [41].

We found the inconsistency between the observational 
and MR findings regarding the association between 
HbA1c variability and the outcome. While the obser-
vational analysis suggested a significant association, the 
MR estimates did not reach statistical significance after 
adjustment. There are several plausible explanations for 
this discrepancy. First, observational studies are inher-
ently susceptible to residual confounding, even after 
adjustment for known covariates. Unmeasured fac-
tors such as lifestyle behaviors, medication adherence, 
or healthcare access may partially explain the observed 
associations. It is also possible that the observational 
association reflects a correlation rather than a true 
causal relationship — a possibility that MR is specifically 
designed to address.

Although the R² values for some of our models were 
relatively low (e.g., R² = 0.06 for LVEF), this is not uncom-
mon in clinical studies where complex physiological out-
comes are influenced by a wide array of factors, many 
of which may not be fully captured in the available data. 
These low R² values indicate that the model explains only 
a small proportion of the variability in the outcome, sug-
gesting limited predictive power. However, the observed 
associations remain statistically significant and may still 
offer meaningful insights into potential relationships. It 
is also important to acknowledge that unmeasured con-
founders—such as genetic variability, detailed medica-
tion adherence, socioeconomic factors, or undetected 
comorbidities—may contribute to residual variance. 
Future studies with more data with broader variable 
inclusion may help improve model performance and bet-
ter capture the multifactorial nature of these outcomes.

Several limitations of this study should be noted. First, 
the glucose variables of FPG and HbA1c measurements 
were obtained from clinical monitoring, and participants 
had a varied number of FPG and HbA1c measurements. 
To minimize the variability, we adjusted for the number 
of FPG and HbA1c measurements on deriving variabil-
ity measures. Additionally, the FPG or HbA1c measure-
ments were taken prior to echocardiography screening, 
which might not have been long enough to fully assess 
the association of glucose variability with echocar-
diographic variables. Second, participants may have 
undergone echocardiography due to specific clinical indi-
cations, meaning that they might not be representative of 
the population with type 2 diabetes. Specifically, echocar-
diography in clinical practice is typically performed when 
there are suspected or known cardiovascular issues. As 
a result, individuals who underwent echocardiographic 
assessment may have had underlying cardiac symptoms 

or risk factors that prompted the examination. Therefore, 
these participants may not represent the broader popu-
lation of individuals with type 2 diabetes, particularly 
those without overt cardiovascular concerns. This limita-
tion may affect external generalizability of our findings. 
Finally, this observational cohort study can only demon-
strate associations rather than casualty.

Conclusions
In summary, our epidemiologic and MR studies demon-
strated that visit-to-visit variability of FPG in patients 
with type 2 diabetes was independently associated with 
the left cardiac structure as well as systolic and diastolic 
function. Identifying associations between visit-to-visit 
variability of FPG and these echocardiographic variables 
may aid in risk stratification for diabetes care in clinical 
settings.
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